Math 421 — Midterm Exam

October 20, 2022

Name: Solutions

- 1. Do not open this exam until you are told to do so.
- 2. This exam has 6 pages including this cover. There are 5 problems. Note that the problems are not of equal difficulty, so you may want to skip over and return to a problem on which you are stuck.
- 3. You may use no aids (e.g., calculators or notecards) on this exam.
- 4. In your solutions, you may refer to any of the theorems proved in class or on the homework.

Problem	Points	Score
1	5	
2	5	
3	6	
4	5	
5	4	
Total	25	

1. [5 points] For each part **a.** - **e.**, give **an example** of a group G satisfying the given property. You don't need to justify your answer.

a. [1 point] G is an abelian group that's not cyclic.

b. [1 point] *G* has infinite order and is not abelian.

c. [1 point] G has more than one subgroup of order 2.

d. [1 point] G has nontrivial automorphism group.

 $\mathcal{I}_{\mathbf{Q}}$

e. [1 point] G has a proper nontrivial center. That is, $Z(G) \neq 1$ and $Z(G) \neq G$.

page~2

2. [5 points] Let G be a group. Let $f: G \to G$ be the function defined $f(g) = g^{-1}$. Show that f is a homomorphism if and only if G is abelian.

First assume
$$f$$
 is a homomorphism. Let $x, y \in G$
then $xy = f(x^{-1})f(y^{-1})$
 $= f(x^{-1}y^{-1})$
 $= f((yx)^{-1}) = yx.$

Thus G is abelian.

Conversely, assume G is abelian. Then if $x, y \in G$, $f(xy) = (xy)^{-1}$ $= y^{-1}x^{-1}$ $= x^{-1}y^{-1} = f(x)f(y)$.

Thus, f is a homomorphism.

3. [6 points] Short answer. No justification necessary. **a.** [2 points] Compute ((12)(345))⁻¹ in S₅.

$$((12)(345))^{-1}$$

= $(345)^{-1}(12)^{-1}$

= (354)(12)

b. [2 points] Find the order of the subgroup $\langle (12), (34) \rangle \leq S_4$. $\langle (12), (34) \rangle = \langle 1, (12), (34) \rangle, (12)(34) \rangle$, which has order 4.

c. [2 points] Compute the centralizer, $C_{Q_8}(i)$, of *i* in the Quaternion group.

i commutes with
$$1, i, -i, -1$$
, but
not with j , so the centralizer must
have order 4 (Lagrange), so
 $C_{q_8}(i) = \{1, i, -i, -1\} = \langle i \rangle$.

4. [5 points] Let G be a group and H and K subgroups of G. Assume H is not a subset of K. Show that $H \cup K \leq G$ if and only if $K \subseteq H$.

First assume
$$HUK \leq G$$
. Let $k \in K$. Want to show $k \in H$
Since $H \notin K$, take $h \in H \setminus K$.
Then $hk \in H$.
Since H is a subgroup, $h^{-1} \in H$, so $k = h^{-1}(hk) \in H$.
Thus, $K \in H$.

Now assume K∈H. Then KUH=H≤G, so we're done. 5. [4 points] For a. - d. circle TRUE or FALSE. You don't need to justify your answer.
a. [1 point] Every nontrivial group contains at least one cyclic subgroup.

b. [1 point] Let G be a group that acts on a set A, and let $g \in G$. If $g \cdot a = a$ for all $a \in A$, then g = 1.

c. [1 point] If a group G acts on a set A and the kernel of the action is K, then $K \leq G_a$ (the stabilizer of a) for each $a \in A$.

d. [1 point] Let Z_{100} be a cyclic group of order 100 generated by x. Then $\langle x^4 \rangle = \langle x^8 \rangle$.

FALSE